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Abstract In our previous work, we proposed a new way

to represent protein native states, using ensembles of a

small number of conformations with relative Populations,

or ESP in short. Using Ubiquitin as an example, we showed

that using a small number of conformations could greatly

reduce the potential of overfitting and assigning relative

populations to protein ensembles could significantly

improve their quality. To demonstrate that ESP indeed is

an excellent alternative to represent protein native states, in

this work we compare the quality of two ESP ensembles of

Ubiquitin with several well-known regular ensembles or

average structure representations. Extensive amount of

significant experimental data are employed to achieve a

thorough assessment. Our results demonstrate that ESP

ensembles, though much smaller in size comparing to

regular ensembles, perform equally or even better some-

times in all four different types of experimental data used

in the assessment, namely, the residual dipolar couplings,

residual chemical shift anisotropy, hydrogen exchange

rates, and solution scattering profiles. This work further

underlines the significance of having relative populations

in describing the native states.

Keywords Ubiquitin � NMR � Residual dipolar
couplings � Residual chemical shift anisotropy � Hydrogen
exchange rates � SAXS � WAXS � Overfitting

Introduction

Proteins are dynamic molecules and often occupy multiple

conformational states in their native states. The functional

behavior of a protein is thus best understood from the

distribution and dynamic transition among these confor-

mational states that form the native state ensemble (Austin

et al. 1975; Boehr et al. 2009; DePristo et al. 2004;

Frauenfelder et al. 1991, 2001).

Nuclear Magnetic Resonance (NMR) experiments have

played a pivotal role in capturing the dynamics of proteins

in their native states. Data obtained from NMR experi-

ments have been used as restraints in recovering the

underlying structures or ensembles. In that process, two

different refinement schemes are routinely followed:

1. Average structure representation In this scheme, a

single structure is used to explain all the observed

experimental data. For Ubiquitin, one of the most

studied proteins, a single structure has been shown to

be sufficient in reproducing most experimental data

(Cornilescu et al. 1998; Maltsev et al. 2014). But it was

also pointed out that average structure representations,

due to the lack of structural variance, cannot fully

capture the underlying dynamics (Clore and Schwi-

eters 2004a, b). This representation becomes less

complete when the studied protein occupies multiple
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distinct sub-states, since the refinement protocol would

be over-restrained (under-fitting; Richter et al. 2007).

2. Ensemble representation In this representation, an

ensemble of conformations is used to explain the

experimental data. In the case of Ubiquitin, there has

been a number of recent work aimed at determining an

ensemble of conformations for the protein, such as

MUMO (Richter et al. 2007), EROS (Lange et al.

2008) and ERNST (Fenwick et al. 2011). All of these

ensembles are shown to represent the dynamics well

but there is little confidence that any given conforma-

tion within the ensemble truly belongs to the native

state ensemble, since the ensemble might be under-

constrained or over-fitted (Phillips 2009; Ángyán and

Gáspári 2013).

In this work, we propose a third representation,

3. Ensembles of a Small number of conformations with

relative Populations or ESP in short In our recent work

(Vammi et al. 2014), we showed that the conformation

space could be represented by far fewer conformations

than the aforementioned ensemble representations and

the conformations could be clustered into conforma-

tion states and these conformation states could be

assigned relative populations, corresponding to their

Boltzmann weights. The advantage of using ESP over

an average structure is that it overcomes underfitting.

The advantage of using ESP over using an ensemble

with hundreds of conformations is that it minimizes

overfitting. ESP uses a much smaller number of

conformations than regular ensembles.

The objective of this work is to establish ESP as a better

ensemble representation for describing the native states of

a protein. To demonstrate that ESP ensembles are indeed of

high quality and minimize overfitting, we resort to a series

to significant experimental data that are not used in the

determination of these ensembles, and show that ESP

ensembles, though having a much smaller number of

conformations, are able to reproduce these experimental

data equally well or even better sometimes and with less

overfitting. Weighted ensembles had been successfully

used in modeling unfolded protein conformational ensem-

bles (Choy and Forman-Kay 2001; Fisher et al. 2010) and

was considered also in loop modeling (Tripathy et al.

2012), but they are usually not used in determining native

state protein ensembles.

Though cross-validation using a subset of the data points

that were left out during the ensemble determination stage

has been commonly used, unused experimental data of

different types present an even better resource for assessing

the quality of the ensembles since they are even more

unbiased. Since all of the aforementioned ensembles,

namely, MUMO, EROS, and ERNST, use NOEs or RDCs

as restraints in their construction, experimental data on

Residual Chemical Shift Anisotropies (RCSA), amide

exchange reactivities, and solution scattering profiles are

employed in this study for cross-validation.

Our ensemble representation with relative populations

could be thought of as an intermediate scheme between the

two refinement schemes aforementioned: average structure

representation or ensemble representation. Both represen-

tations have strengths and weaknesses. Average structure

representation is the simplest in form but lacks structure

variance, while ensemble representation captures the

dynamics of the conformation space well but may suffer

the problem of over-fitting and there is little confidence that

any given conformation within the ensemble truly belongs

to the native state ensemble. The advantage of ESP rep-

resentation is that it has a very limited number of confor-

mation states whose relative populations are rigorously

determined (Vammi et al. 2014) without over-fitting.

Consequently, there is high confidence on the validity of

these conformation states.

Materials and methods

Ensembles of a small number of conformations

with relative populations (ESP)

Two ESP ensembles were reported in our previous work

(Vammi et al. 2014) and will be used in this work as

example ESPs.

(a) Weighted X-ray ensemble X-ray conformations

resolved in different conditions have been shown

to form a native state ensemble (Best et al. 2006). In

our previous work (Vammi et al. 2014), 143 such

structures of Ubiquitin were collected from PDB

(Berman et al. 2000) to form an unweighted X-ray

ensemble. After applying the weighting protocol, 16

of these structures were selected to form the

weighted X-ray ensemble and six conformational

states were identified (Vammi et al. 2014). The

weights assigned to the conformational states are in

agreement with what was found in the 1 ls equilib-
rium simulation conducted by Shaw’s group (Piana

et al. 2013). The conformational state adopted by

Ubiquitin when bound to de-ubiquitinating proteins,

also called the ‘‘switched’’ conformation (Huang

et al. 2011; Sidhu et al. 2011), was given a weight of

*0.30.

(b) Enhanced ERNST ensemble Besides the X-ray

ensemble, our conformation weighting algorithm

was applied to another computationally derived
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ensemble, ERNST (Fenwick et al. 2011) to produce

an enhanced ERNST ensemble. After introducing a

‘‘switched’’ conformation to the ensemble and then

assigning relative populations to the conformations

in the ensemble, it was found that the enhanced

ERNST ensemble was able to reproduce experimen-

tal data in a comparable accuracy to the weighed

X-ray ensemble. This enhanced ERNST ensemble

contains one X-ray switched conformation and 35

conformations selected from the original ENRST

ensemble that has 640 conformations. The compo-

sition of the ensemble along with their weights is

given in the supplementary information, Table S1.

In this work, these two ESP ensembles are compared

with three regular ensembles determined for Ubiquitin:

MUMO (Richter et al. 2007; pdb-id: 2NR2), EROS (Lange

et al. 2008; pdb-id: 2K39), and ERNST (Fenwick et al.

2011; pdb-id: 2KOX), as well as two NMR structures with

pdb-ids 1D3Z (Cornilescu et al. 1998) and 2MJB (Maltsev

et al. 2014) and one crystal structure 1UBQ (Vijay-Kumar

et al. 1987).

Residual dipolar couplings (RDC)

Residual dipolar coupling comes from the interaction of

two nuclear spins (dipole–dipole) in the presence of the

external magnetic field and is defined (Cornilescu et al.

1998; Kontaxis and Bax 2001; Prestegard 1998; Tolman

et al. 1995) as:

D ABf g ¼
X

i¼x;y;z

� lhcAcB
2prð Þ3

cos2 ;iAii ð1Þ

where cA and cB are the nuclear magnetogyric ratios of

nuclei A and B respectively, h is Plank’s constant, l is

permittivity of space, r is the internuclear distance between

the two nuclei, Aii the principal moment of the alignment

tensor and [i is the angle between the internuclear vector

and ith principal axis of the alignment tensor. The align-

ment tensor could be determined by fitting a single struc-

ture or ensemble to the experimental data. Normally, the

residual dipolar coupling reduces to zero because of iso-

tropic tumbling. The anisotropic measurement can be

obtained by the aid of various types of liquid crystalline

media. Details regarding back-calculation of RDC’s were

given in the appendix of our previous work (Vammi et al.

2014).

Experimental RDCs used in this work

The RDCs used to determine the weights for the X-ray

ensemble and enhanced ERNST ensemble are given in

Vammi et al. (2014), along with the codes assigned to them

according to Lakomek et al. (2008). The Q-factors reported

in this work use the newly determined RDC dataset in

Squalamine and Pf1 media (Maltsev et al. 2014).

Q-factor

Q-factor is a commonly used measure of the agreement

between the experimental and calculated RDCs and is

defined as:

Q-factor ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
Dcalc � Dexp

� �2q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
Dexp

� �2q ð2Þ

where Dcalc is the calculated RDC and Dexp is the experi-

mental RDC.

Residual chemical shift anisotropy (RCSA)

Along with RDC’s, chemical shifts also change upon

shifting from an isotropic medium to an anisotropic med-

ium (Cornilescu and Bax 2000; Cornilescu et al. 1998; Liu

and Prestegard 2010; Saitô et al. 2010). The change is

defined by:

Dd ¼
X

i¼x;y;z

X

j¼x;y;z

Ajj cos
2 hijdii ð3Þ

where dii is the principal moment of the chemical shift

tensor, Ajj the principal moment of the alignment tensor

and hij is the angle between ith principal axis of the

chemical shift tensor and jth principal axis of the alignment

tensor. The alignment tensor used in RCSA back-calcula-

tions is generally the same as the one computed from RDCs

using either a single conformation or an ensemble (Vammi

et al. 2014). More information regarding the relation

between RDC and RCSA back-calculation of a confor-

mation can be found in Liu and Prestegard (2010).

The experimental dataset of RCSA used in this work

were reported in Cornilescu et al. (1998) along with the

RDC dataset used for obtaining the alignment tensor.

Magnitudes and orientations of the chemical shift tensors

reported in Cornilescu and Bax (2000) are used in this

work.

Amide hydrogen reactivity

Hydroxide catalyzed amide hydrogen rates were used as a

measure to assess conformational distribution of various

ensembles (Hernández et al. 2010; LeMaster et al. 2009).

The experimental rate constants of amide hydrogen

exchange depend not only on the solvent accessibility but

also on the chemical environment surrounding the amide

hydrogen. Even rarely exposed amide hydrogen could
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therefore exhibit a high exchange rate if the chemical

environment is conducive for such an exchange. This

property makes amide hydrogen reactivity a very sensitive

measure of the conformational distribution of the native

states.

Poisson Boltzmann electrostatic calculations

The experimental exchange rate constants for all the

backbone amide hydrogens of Ubiquitin were reported in

the work by LeMaster et al. (2009). In this work, electro-

statics calculations needed to predict the exchange rates of

conformational ensembles are performed in a similar way

to what was described in a previous work (Hernández et al.

2010). Briefly, surface exposure of amide hydrogens in all

the conformations belonging to the ensemble is computed

using Naccess (Hubbard and Thornton 1993), using default

values for the atomic radii and 1 Å for the radius of the

probe sphere. For all the amide hydrogens that are not

involved in any hydrogen bonding [computed using

HBplus (McDonald and Thornton 1994)] and have a sur-

face exposure greater than 0.5 Å2, Poisson-Boltzmann

continuum electrostatic computations are done using Del-

phi (Li et al. 2012). The CHARMM22 atomic charge and

radius values (MacKerell et al. 1998) are used in the

electrostatic computations. To make the comparisons fea-

sible between different conformations of the ensemble,

N-methylacetamide is added to the grid in such a way that

the molecule is at least 16 Å away from any atom of the

protein. The charge distribution of N-methylacetamide (or

its anionic form) is taken from (LeMaster et al. 2009).

Serines or threonines are mutated to alanine or a-
aminobutyrate respectively before the electrostatic poten-

tial is computed.

Gauche side chain v1 conformers have remarkably low

solvent exposure than their trans counterparts. To account

for this, for every conformation, in addition to computing

electrostatic potential in the original side chain configura-

tion, a gauche v1 rotated side chain configuration also is

used (whenever such a rotation was possible; LeMaster

et al. 2009). The side chain position with the higher

exchange rate is used for further processing.

Solution scattering profile

Small Angle X-ray scattering (SAXS) and wide angle

X-ray scattering (WAXS) data encode the information

about the shape and size of the bio-molecules in solution

(Putnam et al. 2007; Svergun and Koch 2003). The

observed intensities from X-ray scattering are sensitive to

the overall conformational distribution of the protein and

are being regularly used as complementary data to those

obtained from NMR or X-ray crystallographic studies

(Grishaev et al. 2005; Schwieters and Clore 2007). Though

predicting the scattering profiles from either single struc-

ture or an ensemble were routinely done using the Crysol

software package (Svergun et al. 1995), in this work we use

the AXES (Analysis of X-ray scattering data for Ensemble

of structures) software (Grishaev et al. 2010). In addition to

providing significantly improved predictions, AXES web-

server provides an easy way to predict such intensities from

ensembles. The predicted intensities of all the ensembles or

single structures reported in this paper are computed using

a local version of AXES webserver, generously provided

by Bax’s group. The experimental SAXS/WAXS data used

in this work are reported in (Grishaev et al. 2010). The

agreement between the predicted and experimental scat-

tering intensities is most commonly denoted by the v value

that is defined as:

v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M

XM

i¼1

Iexp qið Þ � Icalc qið Þ
r qið Þ

� �2

vuut ð4Þ

where Iexp and Icalc are the experimental and predicted

scattering intensities at qi with a error of ri and M is the

number of observed scattering intensities.

Results and discussion

Agreement with experimental RDCs

Table 1 lists the Q-factors obtained for different bond

vector types using different representations of Ubiquitin.

The RDC datasets used for computing these Q-factors

consist solely of the newly obtained RDC datasets in

Squalamine and Pf1 media (Maltsev et al. 2014). All the

representations, except 2MJB, were determined without

using these newly determined datasets. This allows the

Q-factors reported in Table 1 to serve as a strong cross-

validation. It is worth pointing out that the two ESP

ensembles, the weighted X-ray ensemble and the enhanced

ERNST ensemble, are able to well reproduce the new RDC

datasets (in Squalamine and Pf1 media) even though the

dataset was not used in determining these two ensembles

(Vammi et al. 2014).

The RDC Q-factors obtained for bonds with hydrogen

atoms (NH, CaHa, CHN) are highly sensitive to the positions

of the hydrogen atoms. Allowing a certain degree of devia-

tion from the ideal covalent geometry can lower the Q-fac-

tors significantly. It should be noted that no such

optimization of hydrogen atom positions was applied to our

weighted X-ray or enhanced ERNST ensemble, while it was

to the other representations, whose refinement protocols

allowed such deviations from the ideal covalent geometry to

better fit experimental RDC data. Nevertheless, the two ESP
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ensembles have a comparable performance in RDC Q-fac-

tors to the other ensembles or average structures. Struc-

ture 2MJB gives the best RDC Q-factors, which is not

surprising since it utilizes all the RDC data in its refinement

process.

ESP ensembles give better agreements with residual

chemical shift anisotropies (RCSA)

Table 2 compares the RMSDs between experimental and

computed residual chemical shift anisotropies (RCSAs) for

carbonyl carbons, nitrogens, and amide hydrogens, using

different Ubiquitin ensembles. Since chemical shift aniso-

tropies were not used in determining any of the above

structures or ensembles, they can serve as an unbiased

dataset for assessing the accuracy of different structures or

ensembles. From the table it is seen that weighted X-ray

(an ESP ensemble) outperforms its unweighted counterpart

in predicting RCSAs: the RMS values of all three atom

types are significantly reduced (see Table 2, row 1 and 2).

Except for a nominal increase in RMSD for amide

hydrogens, enhanced ERNST (another ESP ensemble) also

performs better than ERNST itself.

Similar to the sensitivity to hydrogen atom positions in

RDC calculations, calculations of the chemical shift tensors

of nitrogens and amide hydrogens, and thus their RCSA

predictions, depend on the orientations of the amide bond

vectors. Comparisons of RCSAs regarding these two atom

types should thus be done cautiously and with this in mind.

FromTable 2, it is seen that both ESP ensembles outperform

other representations in carbonyl carbon RCSA. While for

nitrogens and amide hydrogens, the performance of ESP

ensembles is slightly worse than average structure repre-

sentations but comparable to other ensemble representations.

In ideal situations, a refinement/weighting using RDC

data would implicitly improve the RSCA predictions of the

structure/ensemble as an optimization of the bond vector

orientation by the RDC data also improves the chemical shift

tensor orientation of the involved atoms (chemical shift

tensor orientations ofN andHNatoms depend uponNHbond

vector orientation encoded in NH RDC data while those of

Carbonyl atoms depend upon CN bond vector orientation

provided by CNRDC data). However, noise in experimental

RDC data along with errors in structure/ensemble models

preclude such ideal situations. Consequently, RCSAs are

considered mostly independent from RDC data and were

commonly used in cross-validation for observables deter-

mined by RDCs (Cornilescu et al. 1998).

Importance of the ‘‘switched’’ conformation

Along with other differences between ERNST and

enhanced ERNST, the ‘‘switched’’ conformation, repre-

sented by 2G45-E, was given a population weight of

*0.30 by our weighting protocol (Vammi et al. 2014) in

Table 1 Q-factors obtained for

different bond types by different

representations of Ubiquitin

NH CaC CaHa CN CHN Description

0.15 0.12 0.17 0.33 0.16 Weighted X-ray

0.18 0.12 0.18 0.34 0.16 Unweighted X-ray

0.12 0.14 0.20 0.31 0.14 ERNST (Fenwick et al. 2011)

0.15 0.15 0.17 0.32 0.16 Enhanced ERNST

0.11 0.13 0.17 0.32 0.21 EROS (Lange et al. 2008)

0.28 0.18 0.21 0.46 0.29 MUMO (Richter et al. 2007)

0.21 0.22 0.23 0.38 0.22 1UBQ (Vijay-Kumar et al. 1987)

0.16 (0.16) 0.13 (0.12) 0.17 (0.16) 0.32 (0.32) 0.19 (0.18) 1D3Z (Cornilescu et al. 1998)

0.08 (0.08) 0.1 (0.1) 0.10 (0.10) 0.30 (0.30) 0.14 (0.14) 2MJB (Maltsev et al. 2014)

The experimental RDCs used for computing these Q-factors consist of the newly obtained Squalamine and

pf1 dataset (Maltsev et al. 2014). The Q-factors obtained by using only the first model of 1D3Z and 2MJB

are shown in the parenthesis in the respective rows

Table 2 RMSDs of residual chemical shift anisotropy (RCSA) as

predicted by different representations of Ubiquitin

Carbonyl Nitrogen Amide H QNH Description

6.37 16.2 1.57 0.11 Weighted X-ray

6.87 17.3 1.61 0.17 Unweighted X-ray

10.7 16.0 1.53 0.06 ERNST

7.84 15.7 1.61 0.11 Enhanced ERNST

8.63 16.6 1.51 0.07 EROS

13.2 19.63 1.67 0.22 MUMO

13.1 18.6 1.68 0.18 1UBQ

8.59 (8.3) 14.17 (14.04) 1.47 (1.48) 0.10 1D3Z

7.71 (8.43) 15.39 (15.59) 1.50 (1.50) 0.07 2MJB

None of the adjustable parameters in the RCSA was modified while

predicting the chemical shifts. QNH is the RDC Q-factor of the NH

dataset that was used in obtaining the alignment tensor. The same

alignment tensor was used in the RCSA computations. The RMSDs

obtained by using only the first model of 1D3Z and 2MJB are shown

in parenthesis in the respective rows
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the enhanced ERNST ensemble. This switched conforma-

tion may be related to the conformational state that was

reported earlier (Massi et al. 2005), though the latter (Massi

et al. 2005) may represent a different conformation state

(Huang et al. 2011). The weight assigned to the switched

conformation in our case also is higher than theirs (Massi

et al. 2005). Comparing ERNST without the ‘‘switched’’

conformation and that with (rows 3 & 4), the latter per-

forms better, confirming the importance of the ‘‘switched’’

conformation.

ESP ensembles reproduce amide exchange rates well

Table 3 summarizes the results of pKa predictions by both

single structure representations and ensembles. The num-

ber of residues whose predicted pKa values deviate by

more than 1 unit is listed for different representations and

in the case of single structures, the number of inaccessible

amide hydrogens is given on the second column.

Ensembles naturally incorporate backbone flexibility,

potentially increasing the number of surface exposed amide

hydrogens than an average structure representation. This is

evident from Table 3 (column 2) where the number of

amide hydrogens that are exposed in ensemble represen-

tations but are inaccessible in single structure representa-

tions is listed. Figure 1 plots the experimental pKa values

in comparison to the predicted pKa values by various

ensemble representations of Ubiquitin. A single index, the

squared sum of the deviations, is given to every ensemble

in the figure to give an overall sense of the quality of the

predictions. Only residues exposed significantly in the

X-ray, MUMO, EROS and ERNST ensembles and having

an experimental pKa value of *5.0 or higher are shown.

[Since a different program was used to compute surface

accessibility, our pKa predictions differ from LeMaster and

colleagues’ computations for some of the residues (Her-

nández et al. 2010)].

pKa predictions are not possible for residues 24, 31–36,

40–42, 48, 51 and 57–60, even though these residues

exhibit high experimental exchange rates. This is because

none of the ensembles has any surface exposed amides for

these residues, which is needed to reproduce pKa values

properly. The observed high experimental exchange rates

for these residues could be from sparsely populated con-

formational states of Ubiquitin, which are not captured by

any ensemble representations. Due to this reason, amide

exchange rates serve as only a weak cross-validation

compared to other experimental validations.

The weighted X-ray ensemble predicts the experimental

pKa values quite well, having an overall performance

better than all the unweighted ensembles. Likewise, the

enhanced ERNST ensemble also predicts the experimental

pKa’s better than the unweighted ensembles. Comparing

with ERNST itself (purple squares), enhanced ERNST (red

triangles) performs significantly better on many residues.

In addition to having more residues whose predicted pKa

values deviate by more than 1 unit from experimental

values (see Table 3, column 1), single structure represen-

tations suffer also from the lack of solvent exposure for

many amide hydrogens (See Table 3, column 2).

In summary, both ESP ensembles (i.e., weighted X-ray

and enhanced ERNST) perform well in predicting the

experimental pKa values. This further validates that ESP

ensembles are of high quality.

Solution scattering profile

Solution scattering profiles are observed scattered intensi-

ties of X-rays that are collected as a function of the scat-

tering vector q. Typically a q value of 0 to *0.3 Å falls

Table 3 Summarized results of pKa predictions by different representations of Ubiquitin

# of residues for which

the pKa predictions are

off by more than 1 unit

# of residues whose

amide hydrogens

are not exposed

Description

5 0 Weighted X-ray

7 0 ERNST (Fenwick et al. 2011)

5 0 Enhanced ERNST

10 0 EROS (Lange et al. 2008)

6 0 MUMO (Richter et al. 2007)

9 5 1UBQ (Vijay-Kumar et al. 1987)

9 6 1D3Z (Cornilescu et al. 1998)

7 5 2MJB (Maltsev et al. 2014)

The number of residues whose absolute deviations are greater than 1 are shown in column 1. Additionally, for single structure representations, the

number of residues for which no prediction could be made due to buried amide hydrogens (but exposed in ensembles) is given in column 2
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into the Small Angle X-ray scattering (SAXS) regime

while the range for the Wide Angle X-ray scattering

(WAXS) regime is *0.1–2.5 Å. The information encoded

in these two regimes along with the results obtained for

different structure or ensemble representations of Ubiquitin

are presented in the following two sections.

Small angle X-ray scattering (SAXS)

Scattering intensities observed at SAXS encode informa-

tion about the overall size and shape of the molecule,

radius of gyration (Rg) and other low-resolution informa-

tion (Makowski 2010). Table 4 lists the v value obtained

by different representations of Ubiquitin.

From Table 4 it is seen that, both weighted X-ray and

ERNST ensembles have better v values than their

unweighted counterparts. The decreases in v value confirm

that conformations selected to form these two ESP

ensembles and the weights assigned to them are mean-

ingful. However, since SAXS data are of low resolution

and are not the best data for validating ensembles, this

should be taken only as a weak confirmation. Indeed,

average structure representations (1D3Z, 1UBQ, or 2MJB)

produce an excellent agreement with the experimental data,

implying that at low resolution the native states of Ubiq-

uitin appear to be mostly a single conformation.

Figure 2 plots the relative intensities (Iexp/Icalc) for dif-

ferent representations. While all the representations per-

form highly similarly at smaller values of q, at higher

values of q ([0.14 Å) single structure representations

perform the best, followed by the weighted X-ray

ensemble.

Wide angle X-ray scattering (WAXS)

Scattering intensities observed at wider angles (higher q)

encode information of higher resolution than SAXS but at

the cost of potentially bringing in a higher noise level since

the intensity of solution scattering also increases. Since

data used in this analysis are limited to the range of q val-

ues that are less than 1.0 Å, the extent of this noise is

limited. WAXS data are often used to validate structural

Fig. 1 Experimental pKa

values for different residues of

Ubiquitin in comparison to the

pKa’s predicted by different

representations of Ubiquitin.

Only the hydrogens that are

significantly exposed in all the

ensembles (X-ray, EROS,

ERNST, and MUMO) are

shown here. A single index, the

squared sum of the deviations, is

given to every ensemble to give

an overall sense of the quality of

the predictions

Table 4 SAXS or WAXS v values obtained for different represen-

tations of Ubiquitin

SAXS v WAXS v Ensemble

1.24 3.45 Weighted X-ray

1.28 3.65 Unweighted X-ray

1.49 3.75 ERNST

1.37 3.00 Enhanced ERNST

1.27 4.53 EROS

1.36 3.99 MUMO

1.04 4.87 1UBQ

1.17 (0.89) 3.40 (3.59) 1D3Z

0.84 (0.97) 4.98 (4.16) 2MJB

The v values obtained by using only the first model of 1D3Z and

2MJB are shown in the respective rows. The v values obtained by

using only the first model of 1D3Z or 2MJB are given in parentheses
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models and to identify structural changes (Makowski

2010). Table 4 lists the WAXS v values obtained for dif-

ferent representations of Ubiquitin.

Because of its much higher resolution, WAXS data is

able to detect conformation state heterogeneity within the

native state ensemble. Our first observation based on the

WAXS results in Table 4 is that ensemble representations

generally do better than the average or single structure

representations (1UBQ and 2MJB). 1D3Z is an exception

as its WAXS v value is comparable to those by ensemble

representations. It is not clear why 2MJB does worse in this

respect than 1D3Z. Perhaps it is because the backbone

dynamics captured by the newly determined RDCs

(Squalamine and Pf1) with which 2MJB was refined is

different from the dynamics represented in other RDC

datasets. Secondly, weighted X-ray and enhanced ERNST

(the two ESP ensembles) are better than unweighted X-ray

ensemble and ERNST ensemble respectively. Thirdly,

though weighted X-ray (16 conformations) and weighted

ERNST (36 conformations) have significantly fewer con-

formations than the unweighted X-ray (143 conformations)

and ERNST (640 conformations), and the other ensembles

such as EROS (116 conformations) and MUMO (144

conformations), these two ESP ensembles clearly outper-

form the other ensembles in WAXS v values. This implies

that ensemble sizes ought to be fairly limited to avoid

overfitting, and that conformations in an ensemble should

not be too spread out, and that having too many confor-

mations makes an ensemble highly susceptible to

overfitting.

Figure 3a plots the detailed relative intensities (Iexp/Icalc)

computed from different Ubiquitin representations in the

WAXS regime. The scattering curves for different repre-

sentations of Ubiquitin in comparison to the experimental

WAXS data is given as in Fig. 3b, which shows that all the

representations display a similar trend and peak positions.

To assess the necessity of having ensemble in inter-

preting the WAXS curves, the spread of the predicted

scattering curves for individual members of ensemble in

comparison to the ensemble average of the two ESP

ensembles is plotted in Fig. 4. The v values of both ESP

ensembles (3.45 for weighted X-ray and 3.00 for eERNST)

are lower than the averages of v values of individual

conformations in the ensembles (3.77 for weighted X-ray

and 4.11 for eERNST). It can also be seen from the fig-

ure that there is sizeable spread among the conformations

within the ensemble, though the overall trend is quite

similar. Both Figs. 3 (especially panel b) and 4 indicate

that the WAXS data provides only a qualitative assessment

of these representations (average structures or ensembles)

and cannot unequivocally rank their quality.

Table 5 summarizes the results obtained for different

experimental data sources used in this work. Only the

experimental sources for which significant differences

exhibit among the three representations are tabulated. The

three representations are qualitatively ranked (Very

good[Good[ Poor) based on their performance in

reproducing these experimental data. From the table, we

can see that ESP ensembles outperform regular ensembles

(EROS and ERNST) in reproducing all the experimental

Fig. 2 Relative intensities (Iexp/

Icalc) as a function of q in the

SAXS regime for different

representations of Ubiquitin.

The v values obtained for

different representations also

are given
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data except for NH RDCs (it should be noted that regular

ensembles have significant deviations from amide planarity

that may have contributed to the lower Q-factors in their

NH RDCs). Putting these together, it seems that the opti-

mal way to represent the native states of a protein is to use

(1) a small number of conformations, and (2) with relative

populations, as in ESP ensembles. This should be the case

especially for proteins that have distinct conformation

states, while for other proteins single structure represen-

tation may be sufficient for most scenarios.

Fig. 3 a Relative intensities

(Iexp/Icalc) as a function of q in

the WAXS regime for different

representations of Ubiquitin.

The v values obtained for

different representations also

are given. b Comparison

between experimental WAXS

data and predicted curves from

different representations of

Ubiquitin. Data sets are

offset along the y-axis for easier

visualization

Fig. 4 Spreads (shown as error

bars) of the predicted scattering

curves of the individual

members of the ensembles in

comparison to the ensemble

averages (in solid lines) of the

two ESP ensembles. Data sets

are offset along the y-axis for

easier visualization. The v
values of both ESP ensembles

(3.45 for weighted X-ray and

3.00 for eERNST) are lower

than the averages of v values of

individual conformations in the

ensembles (3.77 for weighted

X-ray and 4.11 for eERNST)
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Conclusions

In this work, by using Ubiquitin as example and extensive

experimental data validations, we demonstrate that it is

significant to assign relative populations to conformation

ensembles and that ESP ensembles, though having a much

smaller number of conformations, are of better quality than

regular unweighted ensembles. Specifically, we carry out a

thorough cross-validation of two ESP ensembles of Ubiq-

uitin that were determined in an earlier work (Vammi et al.

2014), namely, the weighted X-ray ensemble and the

enhanced ERNST ensemble, and show that these two

ensembles perform extremely well in all four different

types of experimental data: the residual dipolar couplings

(RDCs), residual chemical shift anisotropy, hydrogen

exchange rates, and solution scattering profile. This is not

the case with other ensembles. For example, the MUMO

ensemble, which performs well in predicting hydrogen

exchange rates, does rather poorly in predicting RDCs. The

ERNST or EROS ensemble does well in predicting RDCs

but does not perform well in predicting hydrogen exchange

rates or the residual chemical shift anisotropies. All these

three ensembles (namely MUMO, EROS, and ERNST) do

rather poorly in reproducing WAXS v values. As a result, it

is reasonable to conclude that the two ESP ensembles

portray the Ubiquitin native states more accurately. Both

ensembles reveal that there are six conformation states in

Ubiquitin native states, two of which have dominating

populations over the others. The conformation state with

the largest population contains the unbounded conforma-

tion of ubiquitin, 1UBQ, while the one with the second

largest population corresponds to the ‘‘switched’’ confor-

mation, consisting exclusively of ubiquitin structures in

complex with deubiquitinating enzymes (Vammi et al.

2014).

Qualitatively speaking, the idea of having an ensemble

with a small number of conformation states is advanta-

geous. It both captures the dynamical nature of the native

state (for which a single average structure is often insuf-

ficient to account for) and maintains a strong confidence on

the validity of the conformation states. It is the most natural

extension of the average structure representation. In con-

trast, confidence on any individual conformation that it

truly belongs to the ensemble is elusive in regular Ubiq-

uitin ensembles since they contain so many conformations

and the removal of any single conformation hardly affects

the ensemble. Consequently, these ensembles are highly

susceptible to over-fitting.
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